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for some constants a, b, and c. A similar result
is valid for A». The behavior exhibited in (95)
agrees qualitatively with experimental results.
Moreover, a form finite similar to (95) has been
used by Hwa' to obtain very reasonable multiplicity
distributions.

The numerical test of this model is sufficiently
complicated so we shall defer it to another publi=
cation.

I (q ~, K) = const. dh. exp[ -iXK+ —,'(q+iXa ')

x a(q+ia 'X}]

=const. Jt daexp[-iXK+ ,'iA—Q——,'A 'a'

wheze X is a vector all of whose components are
equal to X. Completing the square in k and carry-
ing out the k integrations, we obtain

APPENDIX

We derive Eq. (5) in this appendix. Writing q,
;-x, q~, and dropping the subscript x on k,„, we
can write the integral in matrix form as follows:

t(q, K)= —f d" he ' dX

where

-aqaq] ~ (A2)

x exp[ --,'kak —-', (k —q)a(k —q)

+i% k], (Al)
Completing the square in X in (A2) and carrying
out the A. integration, Eg. (5}emerges.
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A composite model of hadrons is used to discuss high-energy, large-angle scattering for
elastic and quasielastic reactions. Arguments are given that constituent interchange should
be the dominant interaction at large angles (both (t(, (a(»mt}, rather than gluon exchange.
Using the asymptotic behavior of the electromagnetic form factors of the hadrons, predic-
tions are made for the energy and angular dependence of a large number of processes.
Detailed numerical comparisons with experiment are given for several reactions. A gen-
eral discussion of the qualitative behavior of large-angle quasi-two-body processes is
given. It is shown that data in this region can determine the quantum numbers and wave
functions of the constituents.

I. INTRODUCTION

If any aspect of hadron-hadron reactions can re-
flect the properties of a basic interaction at short
distance, it must be the region of large angle,
large momentum transfer. Certainly, coherent

multiparticle effects dominate in the forward and
backward directions, but such Regge contributions
fall off extremely rapidly, perhaps exponentially,
as t or u increases. The observed smooth,
structureless, and approximate power -law behav-
ior of the pp and mp scattering cross sections at
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large t and u could be reflecting the simplicity of
the elementary forces within and between hadrons.
If hadrons are composite, ' which would provide a
natural explanation of the scaling observed ie.
deep-inelastic electron scattering, ' then there are
two fundamental types of interaction mechanisms
which would control large-angle hadronic scat-
tering: (A) a direct elementary interaction be-
tween individual constituents of the participating
hadrons, such as depicted in Fig. 1(a), and (B) the
interchange of common constituents between had-
rons as shown in Fig. 1(b).

The central assumption and starting point of our
theory of scattering in the deep region, which is
defined to be large s, t, and u, is that eventually
the interaction time is sufficiently brief so that
only a single interaction or interchange is pos-
sible. In our view, this is the definition of the
relativistic impulse approximation for hadron-
hadron scattering. Of course, corrections to this
result can and must be computed to extend the
validity of our lowest-order predictions to non-
asyrnptotic regions. Both types of interaction,
g) and (B), probe the short-distance region since
they depend upon the large-transverse-momentum
behavior of the wave functions describing the bind-
ing of the constituents.

Direct interactions of type (A) surely occur in
nature, if not in strong interactions, then at least
on the electromagnetic level. ' However, the lack
of large corrections to Bjorken scaling, the ab-
sence of an obvious Ge4(t) term in elastic proton-
proton scattering, 4 and the strikingly different
angular distributions of pp and pp argue for a
small coupling of such interactions. Independently
of whether or not the above type of direct interac-
tion is present, constituent interchange inevitably
takes place in any composite mode/. " Therefore
it becomes an experimenta, l question to determine
for what processes and in what kinematical re-
gime a particular basic interaction mechanism
dominates. Since the asymptotic form of the in-
terchange amplitude can be obtained in a manner
independent of the exact nature of the binding in-
teraction, it provides the most economical and

(a)

F&G. &. The two basic types of interactions bebveen
hadrons: (a) gluon interchange and (b) constituent in-
terchange.

simplest possible description of hadronic reac-
tions in the deep scattering region. ' In this paper,
we shall explore the attractive possibility that
constituent interchange dominates deep scattering
and show that it is capable of correlating and de-
scribing many reactions for large s, t, and u,
given only the asymptotic behavior of the electro-
magnetic form factors. Vp to an over-all nor-
malization constant, the asymptotic form for deep
proton-proton scattering is predicted and appears
to be in good agreement with experiment. Other
processes are also treated. It should be stressed
at this point that our purpose in this paper will be
to develop a simple model of the hadrons and to
confine our predictions to kinematic regions where
the theory also is particularly simple. Extensions
to the more general case will be given later.

In this paper, we will present a new covariant
approach to the scattering of composite systems
which is a rigorous alternative to the Bethe-
Salpeter equation and greatly simplifies calcula-
tions of the interchange interaction. It is based
on time-ordered perturbation theory in the infi-
nite-momentum frame. In this approach, the
identification of the hadronic constituents with the
carriers of the electromagnetic current is a nat-
ural assumption and has the following conse-
quences:

(a) Bj oaken scaling —the resulting treatment of
inelastic electron scattering is equivalent to stan-
dard models.

(b) Drel/ Yan reLati-on —the connection between
the form factor and the threshold behavior of the
structure function ' is automatically incorporated.

(c) Bloom -Gilman duality —in inelastic electron
scattering, the resonances and the background
fall off at the same rate in momentum transfer. '

(d) Electromagnetic fixed poles the fixed—poles
in the Compton amplitude automatically have a
polynomial residue. "

(e) Semihadronic fixed poles —J =0 fixed singu-
larities in the amplitudes for photoproduction of
composite hadrons are absent.

(f) flegge behavior the require—ments of binding
and the existence of the interchange force allows
the theory to develop Regge behavior in a manner
which is fully consistent with conventional Regge
theory at low momentum transfer. In addition, it
describes the way in which Regge behavior is
joined smoothly onto fixed-angle behavior.

In this payer, this new formalism is utilized to
calculate several deep exclusive hadronic reac-
tions. Its application to inclusive processes is
presented in Ref. 6. It is amusing to note that our
calculation of the interchange force is analogous
to the computation of atom. -atom scattering via
electron interchange (rearrangement collision)
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with the neglect of higher-order electron-electron
interactions.

It should be emphasized that constituent or par-
ton interchange will occur, regardless of whether
or not free asymptotic parton states exist. John-
son has argued that the absence of free asymp-
totic states may be consistent with certain field
theories. " For our purposes, the noninteracting
and virtual-parton states that are used may cor-
respond simply to a combination of physical states
with unit form factor. Thus, physical parton pro-
duction need not actuaQy be implied for inclusive
processes. However, the identification of the
basic constituents as the carriers of the electro-
magnetic current is necessary in order to relate
deep scattering to the asymptotic behavior of the
I: and M form factors. Conversely, deep scatter-
ing may be used to predict the form factors of
particles such as the n and K mesons.

If the choice of the quantum numbers of the con-
stituents is made as in the valence quark model,
then in some ways, one may regard the interchange
theory as a dynamical realization of the duality
diagrams of Harari and Rosner. " However, in the
dynamical calculations presented here, we have
no difficulty in treating pp and pp scattering and
have no problems introducing spin into the theory.
Interpolating formulas between the deep scatter-
ing and Regge regions are easily constructed and
lead to asymptotic relations between Regge pa-
rameters which are a priori unrelated. '~ Our
treatment of the deep region, and Feynman's pic-
ture of Regge behavior which arises from the in-
terchange of wee partons" can form a unified and
simple treatment of hadron-hadron scattering.

In the remainder of the Introduction, we wil1
outline the main features of our theory which are
then discussed in detail in the listed sections. In
order to be ab1e to calculate scattering in the deep
region, an approach must be deve1oped which will
aQow a convenient characterization of composite
systems and a simple evaluation of their mutual
scattering amplitude. In Sec. II, we shall discuss
in detail a natural formalism for covariant bound-
siate computations which was briefly (and evidently

inadetluateiy) described and utilized in our recent
papers. "The formalism uses time-ordered per-
turbation theory in an infinite-momentum frame of
reference. In this formalism, pair creation by
the current can be suppressed and the calculation
of the electromagnetic forJn factor can be per-
formed as illustrated in the time-ordered diagram
of Fig. 2, where the photon interacts directly with
the carriers of the electromagnetic current within
the hadrons. All of the complications of the ha-
dronic interactions reside in the multiparticle
wave functions. The asymptotic behavior of the
form factor E(q') is then controlled by the asymp-
totic behavior in transverse momentum of one of
the wave functions as illustrated in Fig. 3(a). The
other wave function provides the convergence for
the loop integral. Hence the form factor and the
wave function have essentially the same asymp-
totic power-law behavior. In Sec. III the details
of the form factor calculation are given in the
spinless case and then in the more involved nu-
cleon and pion cases that require the correct
treatment of spin.

In Sec. IV, the basic interchange contribution
to exclusive scattering, illustrated by the topolo-
gies shown in Fig. 3 (b}, is discussed in detail.
This process can be computed in terms of the
same wave functions used in the form-factor dis-
cussion. In the deep scattering domain, one wave

p+q

(su)

p+q+r

(ut) (t. u)

FIG. 2. The relevant time-ordered diagram for the
form factor in a constituent model. Pair creation by the
current is suppressed in the P — limit for the frame
(2 &)

FIG. 3. The basic graph topologies for (a) the form
factor and (b} hadron-hadron scattering.
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function again supplies the convergence for the
single-loop integration and each of the other three
supply the asymptotic behavior of a form factor
with an appropriate argument. The approximate
structure of the (u, t) term in the invariant scat-
tering amplitude for large s, t, and u turns out
to be

order g to a charged and neutral scalar constitu-
ent. The vertex can be computed from simple
time-ordered perturbation theory (in the manner
of Heitler) to order eg' from 3! time-ordered
graphs. However, if we follow Weinberg' and
Drell, Levy, and Yan, ' and choose +he reference
frame such that

M(s, t, u) -sE(s)E(t)EQ) .

Besides presenting the basic interchange calcu-
lation, in Sec. IV we also discuss a channel Ham-
iltonian formulation of rearrangement collisions
which can considerably simplify certain calcula-
tions in time-ordered perturbation theory. In Sec.
V, details are given on the additional effects of
spin and crossing symmetry for a number of
physical cases, including kaon-nucleon scattering,
pion-nucleon scattering, nucleon-nucleon, and
quasi-two-body reactions. In Sec. VI, the exten-
sion and continuation to nucleon-antinucleon elas-
tic scattering and their annihilation to two mesons
is discussed. In all cases, the interchange theory
predicts an asymptotic fixed-angle cross section
of the form

-s "R(cos9),-N (1 2)

where 8 is the center-of-mass scattering angle. ""
The value of N and the function 8 are determined
by the asymptotic falloff of the form factors of the
hadrons involved in the reaction. Our theory then
predicts a factorized form for the differential
cross section in the deep region which provides a
smooth interpolation between the structured for-
ward and backward peaks.

P —((M' +&2)~ 0 E)
= (E+ M'/2E, O„E),

q„=(q., g. , o)
(2 1)

with

(p +q)' = M' = M'+ 2p q +q'

and

q' = -q~' + 0 (1/P'),

&p+ql J"(0)lp)
-=(2p+qPE(q')

g d p
(2v) 2Z 2Z 2Z'

(P, +P, )
(2 2)(R @, R,)(R R' R )

then, in fact, only the single time ordering of Fig.
3 (a) contributes in the limit P- ~. (The other five
diagrams are suppressed by two powers of P due
to the presence of baclavard-moving particles in
an intermediate state. ) The vertex contribution
to the form factor from Fig. 3(a) is

II. RELATIVISTIC DESCRIPTION OF
COMPOSITE STATES

As mentioned in the Introduction, the simplicity
and elegance of the interchange theory discussed
here rest in large part on the fact that a composite
state is simply and concisely described in time-
ordered perturbation theory in the infinite-momen-
tum frame. As a preliminary to the true bound-
state discussion let us first consider the form
factor of a spin-zero hadron which is coupled to

Parametrizing the intermediate (on-shell) mom-
menta as

m2+ jigPI"= xP+ --,—, , k, , xP,
2~x~P

p~~= x P+ — --, k~+q~, xP, 2 3

leads to energy denominators of the simple form

and

1 0 '+m2 k 2+42 1—M' — — =-—[M' —S(k„x)],2P
l x 1-x 2P

P g 2

0 (P) otherwise

0&x&1

(2.4a)
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1, (k, + q, )'+ I' 0,'+ Z' 1
2P x
—M2+2p ~ q — — =—[M2 —S(k~+ (1 -x)q, x)], 0&x& 1I -x 2p

P+q 1 2

0 (P) otherwise .

Thus taking P- ~, we obtain the covariant result (q~' =-q')

E(q') =,J d af'& g(k, + (1 —x)ij, , x&y(k„x),

(2.4b)

(2.5)

where we have defined a two-particle wave func-
tion as

y(k~, x) =g[M' —S(k„,x)+i@] '. (2 8)

g(k„, x) =Q (k~, x)[M' —S(k~, x)+if] '. (2 7)

Note that the effective current (for p =0 or 3) is
simply 2Px.

Despite the simplicity of this example, we shall
show in this section that the form of the result
(2.5) is correct in general for a two-component
wave function (spinless case), and is readily gen-
eralizable to the higher particle components of the
state.

For the calculation of the asymptotic dependence
of the form factor (~q ~

-~), one charged compo-
nent is at large transverse momentum relative to
the rest of the constituents. This is the important
configuration that contributes to the asymptotic
dependence of the form factor if the general n-
point wave function has asymptotic inverse-power-
law dependence. (In the case of exponential falloff,
the large transverse momentum tends to divide
among the constituents. ) In this asymptotic region,
we shall assume that after summing over all
higher-particle-number states, the net effect is
that the parton sees an effective "core" which acts
as a single-particle state. It is evident that for a
general bound system of two particles, a and c,

This displays the bound-state pole at

k~ +M
x(1 -x)

=(p, + p, )'~M',

where

(2.8)

= (1 -x)[S(k„x)-M')] (2.9a)

M, ' —(p —p, )' =x[S(k„x)—M'] . (2.9b)

The utilization of w'ave functions of the type
(2.V) for the calculation of form factors and the
interchange force is discussed in the next chap-
ters. For these purposes, we must first discuss
the manner in which the vertex function Q depends
on the off-shell variables of Eq. (2.9). A simple
example which exhibits the salient features is the
case of spinless particles with a spinless gluon

M„= (1 —x)M,2+xM~2

while allowing for additional falloff dependence in
the momentum k transverse to the bound-state
direction P. Most generally, the dependence of
the vertex factor P(k~, x) can be expressed in
terms of the covariant variables

k~2+M„-x(1 -x)M2
M -jp-p j'=—

e & a& x

+ 4 ~ 4

—k I-xJ ~
—k I-xJ s

-k I-x

FIG. 4. An example of the lowest-order binding potential and the equation satisfied by the vertex function.
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MP"= P+ 2,0,P

'+m
p~= xp+ ', k, , xp2'' (2.10)

+mcp~= 1-x p+ ', -k, 1-x p .

Since the k~ and x integrations are uniformly con-
vergent, P can be taken to infinity after the ma-

providing the binding force.
The equations for the vertex functions Q and the

associated wave function g are depicted in Fig. 4.
The dashed lines are the gluons, and the vertical
dotted lines mark the time-ordered energy de-
nominators. We choose a Lorentz reference frame
such that

trix elements are written down. The four-vectors
are chosen to conserve three-momentum, and the
energy component is computed by applying the
mass shell condition as is required in time-or-
dered perturbation theory.

The exchanged gluon of mass p. and coupling g,
which is responsible for the binding, has its four-
momentum yarametr ized as

(l~ —k~) + p.
y -xP+, l~ -k~, y -x p

2(y -x P

(2.11)

for y & x, corresponding to the first diagram on
the right «Fig. 4, and a similar form holds for
the second diagram with y &x. The equation for
Q(k~, x) takes the form

where

2(2')3 (1 ) ~2 $($ y) y 'g ( + ~ » (2.12a)

+SR1-y x y —x

1~2+ m, ~ k~2+ m, 2 (l~ —k~)~+ ij2
+ZE

y 1-x x-y (2.12b)

Note that the normally complicated square-root
phase space is linearized in the infinite-momen-
tum-frame limit. Thus the equation for Q is

P(k, x) —= [M' —S(k, x)+i@]y(k,x)

(2.13)

This is a fully relativistic description of the bound
state within the calculational rules of time-ordered
perturbation theory; if V is given, then in princi-
ple g is completely determined. "

For the applications in this payer, we shall need
to know that P is normalizable and to study its
asymptotic form. A discussion of the nonrelativis-
tic limit will be given elsewhere.

There are three limits of interest: k~' large,
x-1, and x-0. In each of these cases, it is easy
to see that the right-hand side of Eq. (2.13) van-
ishes like S '. Thus the two covariant off-shell
variables enter into the asymptotic dependence of
g in a symmetric fashion. This unified limiting

behavior then allows us to write the effective form
for g in any of the above limits as

y(k„x) - [S(k„x)]-'N(x), (2.14)

where N(x) is a relatively slowly varying function
of x which does not vanish at the end points of x.
Note that this discussion is appropriate to applica-
tions such as the form factors and parton-inter-
change exclusive scattering contributions where
neither particle appears in the initial or final
state. When one of the particles appears in the
final state, the dependence for x-1 and x-0 may
differ. See Ref. 6 for further discussions.

The inverse-square dependence in Eq. (2.14) is
specific to the potential of Eq. (2.12). Since we
will not need to commit ourselves to a specific
binding interaction and indeed wish to avoid tying
our results to a definite potential, our procedure
will be to determine the power falloff of g in the
variable S from the asymptotic form of the elec-
tromagnetic form factors. Then knowledge of the
form factors will be sufficient to describe the as-
ymptotic behavior of the exclusive cross section
in the large t, u region.
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If one wishes to normalize the wave function and
to compute the relative normalizations of different
reactions, then the wave function g must be de-
scribed in more detail. The simplicity of Eq.
(2.13) and its close resemblance to the nonrelativ-
istic problem where one's intuition has already
been developed, suggests many straightfox ward
phenomenological models for the wave function.
Perhaps the simplest is to set g equal to a rela-
tivistic "Hultbbn" form:

y = (S-~')-'(S-M2)-9r(x), (2.15)

~here M, '&M' is a parameter charactex izing the
range of the force, and N(x) is a smooth nonvan-
ishing function of x.

Finally, we state the rule for establishing the
correct wave function arguments in the more gen-
eral case in which the bound state momentum is
zP +@~, coupling to constituents with momentum

tlt, p~q =[M —8(k~ + (1 —x)g~, x)j

x Q(g~+ (1 -x)j~ t x) . (2.1V)

This expresses the general rotation and transla-
tion yroyerties of P. Note that the transverse-
momentum argument %~ + (1 —x)g is that compo-
nent of particle a's transverse momentum which
is perpendicular to the direction of the incoming
bound state.

If the constituents and bound state have spin,
which definitely must be considered if one wishes
to compaxe with experiment, then we shall assume
that the leading term for large S factors in its
spatial and spin dependence. Thus, for example,
a pion coupling to two fermions can be described
by a wave function which is the direct product of
the standax'd Dix'ac splnox'8 xllultlplled by the type
of moxnentum space wave function discussed above.

In a complete description of a composite hadron,
all the multiparticle components of the wave func-

(2.16)

k.'+ m.'p"= (t r)rpr ' -', -a, , (t )p) .r-r
2(1 -x)~P

The wave function in this case is

tion must be specified. As mentioned earlier, it
will be assumed that at high transverse momen-
tum, a given constituent sees a combined coherent
effect resulting from all of the other constituents;
the latter can thus be treated dynamically as a
single effective system or "core" of limited mass.
This assumption allows- us to describe the main
features of the constituent wave functions in the
regions of interest, and to readily link the inter-
change amplitude for elastic scattering to the as-
ymptotic behavior of the form factor. In fact, the
form (5.4) for the interchange amylitude is proba-
bly independent of the core assumption and is ap-
proximately true in a wide class of multiparticle
models in which the wave function has approxi-
mately a power-law asymptotic dependence.

It is an interesting question as to whether the
asymptotic behavior of the wave function is sim-
ply related to the most basic number of constitu-
ents. For example, the nucleon wave function will
be shown to fall faster than that of the pion; this
may be a reflection of the fact that (for x-1) in
the simplest models, the nucleon is a bound state
of three quarks whereas the pion is composed of a
quark pair. In any case, we can proceed by using
effective two-body wave functions and defer until
later, after more is known about theix behavior
and properties by comparing with experiment, a
more unified treatment of the basic binding mech-
anism. Let us turn now to a discussion of the form
factors of a composite system.

m. FORM FACrORS

In this section, we will give a detailed discus-
sion of the electromagnetic form factors of the
nucleons and mesons within the framework of the
constituent and core approximation. Experimen-
tal knowledge of the asymptotic behavior of the
form factors will yieM information on the asymp-
totic behavior of the hadronic wave functions and.
vice versa. This discussion will also allow us to
develop the type of analysis which is required in
order to extract the leading asymptotic depen-
dence in more complicated reactions. Many of
the results which have been obtained from Bethe-
Salpeter analyses will be immediately apparent
here.

A. Scalar Particles

RecaQ that the matrix element of the current in the interaction picture is

(2p+e)" &(e') = &0„,l &"(o)Ig,)
= Sp.,li"(0) ling»

d'p=pa. (tr) jtp ap tp (ap„.p„,}(p.+p.')r(tp, p, )+(pair-araattoaatataa). (3 1)
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For P- ~, and the frame choice (2.1) for q", the pair-creation states correspond to backward-moving
particles in the wave functions and are suppressed by two powers of I' in the amplitude. We thus obtain
(q.'= -~')

+(q') =Z &.+.(4"),
1

E, (q')=
~ ) d%

~
~g, (k +(I —x)q, x)g, (k„,x),

by using the parametrization (2.3) and the rotation property (2.1V). Note that the sum over a requires
summation over both particles and antiparticles.

One should note that there are two central assumptions made in deriving Eq. (3.1):
(1) the identification of the carriers of free electromagnetic current in

i"(0)=:Z ~A'. ~„4.:

(3.2)

(3.3)

with the constituents of the hadrons, and
(2} the assumption that a sum over (parton+core) two-particle states, in effect, saturates the free-

particle intermediate state sum required in (3.2}.
The normalization condition on the wave functions from (3.2) is

1
dx f, (x) =1 (all a),

0

where

1 d'k
&a(x) =2(2&)s x(1 x) Isa(ki~ x)I'.

(3.4)

(3.5)

This is also the condition that Z, =0 for a composite state. The function f, (x) is the normalized fractional
longitudinal-momentum distribution function, which appears in deep-inelastic electron-proton scattering
in the Bjorken limit where x = Q'/2m v and

v W, (x) = Q A.,'x f, (x) . (3.6)

We can easily check that the bound-state calculations are gauge-invariant:

dxq5'„, ~l j„(0)~ip) =
~, f rpk g(k, + (I-x)iT„x&q ~ (p. + p.')g(k„x) . (3 7)

This vanishes since

q (P.+P.')=-~.'(1 -x)-2k, q.
(3 6)

X-O (ml~q&~)
dxx'" '(1-x) 'N, (x),

(3.9)

='-e (P. +p.')

vanishes upon symmetrization in k~ - -k~
—(1-x)q, . The proof for the case of spin is just
as simple.

Let us now determine the behavior of the form
factor as the momentum transfer becomes asymp-
totic. Assuming that the wave function has power-
law behavior for large S, g-S "N(x) [see Eq.
(2.14)], then for q

' large for fixed x, there are
two regions of the k, integral which contribute:
k -0 and k~- -(1 -x)q, . These yield equal con-
tributions to I', :

where

N, (x) = 2, d'u, |j(k„x)[x(1-x)]-" (3.10)

is a finite and nonvanishing function of x since
P-[x(1-x)]"at the end points. Thus we have im-
mediately

+.(e') - (q. ') "»(q~'/~') (3.11)

in the asymptotic region. Note that the Drell-Yan
relation '

vW, (x)- (1 —x)'"-'

for x-1 if

&(e')-(q, ') "
(q '-")

(3.12a)

(3.12b)

is automatically satisfied (up to logarithmic modi-
fications) when the wave function depends asymp-
totically on the symmetric variable S.
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8. The Nucleon Form Factor

For the calculation of the nucleon electromag-
netic form factors, one must include the full com-
plexities of spin. We will assume that the carriers
of the electromagnetic current are fermions. The
matrix element of the electromagnetic vertex of
the nucleon has the form (a sum over constituent
charges is to be understood)

2 dg
eTp2(2)pd kg(1)g(k~+(1x)q~px)

1
Gs =,Q u(p)y ~ e~u(p+q)e~

spins

(3.18a)

~." = (p+-.'q)'W'+q, '/4)-'", e,'=+I (3.13b)

The absence of the backward-moving contribu-
tions permits Eq. (3.14) to be used for all com-
ponents v, and thus we may use the following pro-
jection operations to isolate the standard nucleon
form factors, Gs(q') and G„(q'):

&&q(k, , x)j„, (3.13)
1

G„=2 —, Q u, (p)y eru(p+q)er Z,
spins

(3.19a)

j,=&7(p+q)I" (m, + j(,)y, (m, +$,)i'u(p). (3.14)

We have used summation over internal spin to re-
ylace

gu„(p, )u~(p, ) =m, + p', ,

P Pl Sgg0 0 (3.16)

The spinor matrix oyerators, I" and I", define the
coupling of the core e and charged constituents a
or 5 to the nucleon. Two cases wiH. be of interest
to us:

(1) Spin-0 core:
r'=I =I

(2) Spin-1 core:
p 0|

I» ~ eel y oeoy g

(3.1Va)

(3.1'Ib)

These are yerhaps the simplest choices for the
spin coupling consistent with the quark model.
The vector propagator for case (2) arises from
the 1nternal sunl ovel 8PiQ statesy by deflnltion P~
is on the mass shell: p, '=m, '.

For the case of bound states, the backward-
moving fermion states do not contribute to the cur-
rent (3.13)—even for the case of so-called "bad"
transverse current comyonents. This is in con-
trast to perturbation theory [e.g., quantum elec-
trodynamics (QED) and y, coupling] in which the
matrix elements of the bad currents (connecting
oppositely-moving fermions) grow in P at the same
rate as the backward-moving energy denomina-
tors." For bound states, the extra suppression
of the vertex functions f 611mlnates all 8uch coQ
trlbut1ons in the P- ~ 11m1t. The absence of back-
ward moving fermion contributions leads auto-
matically to the absence of certain types of fixed-
pole behavior in hadronic and yhotoproduction pro-
cesses. (See Sec. IV.)

6 p
' Q =6

z
' Q' =Oy c~ = -I . (3.19b)

Thus G~ and G„are given by integrals over k~,
and x of the type of Eq. (3.2) with the integrand
multiplied by the projection operators applied to
) p ~

For a scalar core e, it turns out that the leading
terms in the spin projections for large q~ cancel
for G„but not for G~. Hence, G~ is larger by a
factor of (-q') in the asymptotic region. The ex-
perimental evidence 1s that G„and G~ scale, that
is, they are proportional to one another, and that
G„-l/(-q')' for large (-q'), at least for (-q')&4
06V2. Since it seems unreasonable to supyose
that G~ falls more slowly than G~, we will assume
that the scaling property —at least up to loga-
1 ithms 18 valid asymptotically

The simplest spin choice for the core spin which
reproduces Gz(XG~ scaling is spin one. U'sing the
helicity conserving form given by Eq. (3.17b) for
the coupling of the core, we obtain to leading
O1 der

dxG@~(q)'()3dk2() l/j((1 x)qgpx)

&&&(k, x)j „, (3.20)

j,=-,'q, '[(1 -x)'+O(k, '/x'm, &)]+O(qo), (3.2la)

j„=-q~'[1 -k~'/xM, ']+0 (qo).

The full nucleon form factor is then given by a sum
over the charged syin--.'- constituents. Both k~
small and k~ + (1 —x)q~ small contribute equally to
the asymptotic behavior. Using the above equations
and the standard form for g-S ~N(x), we obtain

(3.22)

This relation only holds asymptotically; the non-
.ding terms are not in the same ratio, so the
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scaling law is only an approximate relation.
In order to yield dipolelike behavior at large q',

the value of n should be near 3. Notice that the
strong convergence of the k ' integration aHows
the above type of asymptotic analysis. Note also
that for n =3, an additional contribution from spin-
zero core exchange would modify only G~ to lead-
ing order, so that this freedom can be used to ob-
tain the observed experimental ratio G»~'/Gee'- p~.

If there were an intermediate or elementary vec-
tor particle which mediates the electromagnetic
interaction such as in a vector-dominance theory,
then the wave function P would fall off with at least
one less power of 8 (n &2). Later, when deep-
elastic pp scattering is discussed and compared
with experiment, it will be shown that such small
values of n are ruled out.

C. The Pion Form Factor

Needless to say, unlike the nucleon case, the
large-q ' behavior of the pion form factor is com-
pletely unknown. %e shall show that the large-
angle data for pion-nucleon elastic scattering
does, in fact, demand that the pion form factor be
close to that of a monopole, E,(q')-(-q') '. An-
ticipating this prediction, we shall choose the
pion wave function so as to produce this behavior.
It will be interesting to see if pion-nucleon ex-
periments at higher energies continue to be con-
sistent with the simple monopole behavior.

gee shall take the pion as a bound state of a spin-
—,
' elementary constituent bound to a spin=,' core.
The matrix element of the current is thus

tity

8(Af))-»' =— dz z~"(4 +f)z)-3
0

the k~ integration is easily carried out by com-
bining denominators. Then (setting I, = m, for
convenience) the form factor becomes

(3.26)

1

E,(q') ~ dx dzz'"(1+z) 'x(1 -x)
0 0

D. Transition Form Factors

It is an interesting matter at this juncture to
discuss transition form factors for processes
such as y+ X-N*, which are defined as the non-
diagonal matrix elements of the current operator:

2 2 +2
(4&*.,ld"(o)ll, &=-E * (q') 2p" + .™

(3.28)

The scalar case will be treated here, but the ex-
tension to the spinor problem does not change any
of the conclusions. The form factor is given by

x 1+,— i, . (3.2V)(1+z)' Jd, '
The symmetry of the integrand under the trans-
formation z -z ' can be used to show that the con-
tribution for z & I is equa, l to the contribution from
z& 1. After defining I =z(1-x)2q„2/M 2, and in-
terchanging the w and x integrations, one then ob-
tains the expected result, E,(q')- (-q') '.

(2p+q)" E„(q')

I 2 dX= —
( )3

d2k
2( ==-)g(k~ + (1 -x)q~, x)

0

x q(k„x)T",

—=(1 -x) '((k '+m, ')+f[k + (1 -x)q, ]'+m, '}

+4xM„m, —(1 -x)q, ') .
Again the two regions of the k„ integration con-
tribute equally. Unfortunately, the leading terms
in q~2 of T, cancel and the asymptotic behaviox of
E, must be extracted with some ca,re. Vfe shall
see that the required pion wave function must fall
a,s S 3/2. Using such a wave function and the iden-

(3.25)

1'"=+Tr[(m, + p', )y"(m, + p, )y, (rn, -p, )y,] . (3.24)

The form factor is easy to extract by choosing the
v =0 component and allowing I'- ~:

2 dX
=2(2 ), d'k

(1 )
g» (k +(l-x)q, , x)

xy»(k, x) . (3.29)

If the excited state has nonzero angular momen-
tum, the appropriate spin labels must be included,
and the appropriate spherical harmonic depen-
dence in g»~ must be taken into account.

The asymptotic dependence of E~+ ~ depends on
the behavior of the N* wave function. However, if
this wave function falls off with the same power of
S or faster than that of the nucleon, then the q'
falloff of E»* „is the same as that of the elastic
form factor E„. Note however, that for g»w-8 "*,
g-8 ", with n*&n, the factor ln(-q') present in
Eq. (3.11) for E„(q') is absent in E»~ „(q'). In the
latter case, this is due to the fact that the large
momentum transfer prefers not be routed through
the N* vertex: The leading behavior comes from
the region k~- -(1 -x)q~, and is determined by
the nucleon wave function; the convergence of the
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k~ integration is controlled by the N* wave func-
tion. It would seem very unnatural to expect that
the wave functions of the excited states would fall
slower than that of the nucleon. This would be the
only way to break scaling between I'N~ ~ and I„.

The prediction that the transition form factors
should scale at large momentum transfers with
the nucleon form factor is quite striking. It is
consistent with the data, but a definitive test at
large momentum transfer is needed. This would
be a simple yet crucial test of the composite the-
ory. Now scattering processes will be discussed
using this formalism.

IV. SCATTERING AND CHANNEL HAMILTONIANS

We now turn to the problem of calculating the
elastic scattering of two composite systems. " We
focus our attention on a covariant treatment of re-
arrangement collisions —the scattering due to the
interchange of common constituents within the had-
rons. The main assumption of our theory is that
in the deep-elastic region, asymptotic s, t, and u,
the time of interaction is insufficient for the in-
terchange of more than one constituent. The prob-
lem then becomes analogous to that of electron
rearrangement in atom-atom collisions, with the
neglect of binding interactions between the inter-
changed electrons —and the neglect of correc-
tions higher order in u from higher particle (pho-
ton, pair states) components of the atoms. In
general, the hadronic problem requires a full
multiparticle formulation. However, since in the
deep scattering region, the wave function of the
interchanged constituent is required in the region
of high transverse momentum relative to the re-
maining constituents, it is reasonable to treat the
latter system as a single particle or core, as was
done in the infinite-momentum-frame form-factor
calculations. Thus a two-particle approximation
to the bound state is again relevant in this pro-
cess. Note that the reference to a state of definite
particle number applies specifically to an infinite-
momentum reference frame. This is crucial if we
are to relate the wave functions used in the inter-
change calculation to those used in the calculation
of the form factor. This is because it is only in
an infinite-momentum frame that the current in-
teraction can be defined (for all q' ~ 0) in such a
way as to not change particle number.

In the two-particle approximation, the calcula-
tion of a rearrangement collision is easily formu-
lated within the framework of a multichannel
Hamiltonian formalism. We recall first the in-
finite-momentum wave function equation describ-
ing the breakup of a bound state of mass MB into
its two constituents, a and c [for definitions of the

momenta, see Eq. (2.10)]:

[Ms' —S(k~,x)]ps(k~, x) =[M~ -K, K-,]ps(k~, x)

(4.1)

where V„ is an integral operator over k~ and x,
and K, and K, are the infinite-momentum-frame
"kinetic energies"

K.= (k, '+ m.')jx,
K, = (k '+m, ')/(I -x) .

(4.2)

In general,

K, =(%„'+m,')x, ', Qx, =1. (4.3)

We will consider the rearrangement collision de-
fined by

(a+c)+(b+ d)- (a+ I)+ (b+c) .
(B ) (A) (C) (D)

(4.4)

For convenience, we define the external four
vectors as [see Fig. 3 (b)]:

P~=p,

QA = P +q +t'
~

&c = p+q

p'~ = p+r,
so that t =q', u =x'. The mass-shell conditions
are

q'p =Mc'-MB'-q

2x'p =MD -MB -r, (4.6)

q"= ~q~~ 0 (4 'I)

, r~, 0

Thus we have the simple relations

r 2
(4.8)

and the convenient orthogonality relation for elas-
tic scattering

(4.9)

The initial noninteracting state is the direct prod-

2q x=M„'+M '-M '-M '.
The most convenient infinite-momentum frame for
this problem is defined by:

MB
p ++ 2g 70J
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uct state g, =(()„(1)s which satisfies

(Es -If)kr = VI 4i (4.10)

where Vr = V„+ VM is the sum of the two binding po-
tentials, and K =K, +K, +K, +K~ is the total kinetic
energy. The initial infinite-momentum "'energy"
1S

with I'; I".'I =E~ =s -M„' -ciI~'. Proceeding in the
same manner, but constructing the full incoming
wave function that is equal to II)~ in the infinite
future yields the alternative equation:

T„,= (V- V„)+(V- V~)(E -E —V) '(V-Vi).

E»= M„'+ Ms+(q~+r~)'
=s -M~ -M~ (4.11)

In the lowest-order Born approximation, one
therefore has the two alternative forms

[8 -EI@ "= V4', (4.18)

e'=q, + (E -Z —V, )-'(V- V,)e'
=-()i+ (E -K —V~) Tr~gi .

The transition operator is given by

(4.14)

7'„= (V- V,)+ (V- V,){E-X -V)-'(V- V,).
(4.15)

A similar equation holds for the final state g~
where only the potential V~ =V~+V„ is present.

'The full interaction between the composite sys-
tems can be written in the form

(4.12)

where W contains terms such as V„, V,~, intrinsic
mu]tiparticle interactions, and the "optical" po-
tentials which incorporate the effects such as ab-
sorption from higher multiparticle channels. The
full wave function 4' satisfies the equation

~zz =—&()'zl V- ~ill»&

= &41 V- Vzl()'»& (4.18)

which are indeed equal on the energy shell by vir-
tue of the equations for $1 and g~ .

We now make the physical assumption that the
main contribution to deep scattering from V- V~
= V~ +8' is due to the V~ term; that is, there are
no explicit extraneous gluons present. The two
terms 8' and V~ correspond precisely to the two
contributions ((A) and (B) discussed in the Intro-
duction. Except for possible energy-independent
absorption corrections contained in W, the higher
Born contributions in Eq. (4.17) fall off more
rapidly in s than the first Born contributions and
will be neglected. The Pomeranchukon-dominated
absorption corrections —while changing the nor-
malization of the interchange contribution —do not
change the energy or angular dependence obtained
from the first Born calculation.

Thus, the appropriate form for the interchange
transition amplitude is

The required matrix element of the transition op-
erator for the rearrangement process of interest
is then

M» i —8'z I V»I(() s&

= &41~~lpi& (4.1S)

~~I =
&kr IT»»Its& (4.16) Using the equations obeyed by g, and gz, we obtain

M z= &(1)»-IE -If ll»&

-=&41&1((»& (4.20)

where

1

), I '),',
(
—--), a( (% —x», x)( (k () —x)q„, )(„(k,—*r + () —*)i(,*)( (ic, x),

(4.21)

6 =s -M -M -K, -Kq -K -Kq

= M~ + Ms —S~(k~ + (1 —x)q~ —xr~ ) x) —Ss (k~ ) x)

=M~ + MD' —Sc(k~ -xr~, x) —S~(k~+ (1 -x)q~, x) . (4.22)

This derivation makes it clear that in keeping only the interchange contribution, one is neglecting the par-
ton-parton interaction relative to the parton-core, or binding, interaction.

It is interesting to see how this result arises in lowest-order perturbation theory. There are four sur-
viving time-ordered contributions to the interchange amplitude which are illustrated in Fig. 5.
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Defining the pointlike wave functions from the appropriate energy denominators, e.g., gs
=g(Ks -K, -K,) ', as in Sec. II, we have immediately

1
(2 )~ J~

d b 2 1 )2 gcgsg~tjs~[( ~-Kq-K~)+ (Ks -K -K )][(Kn-K~-K,)+(Kc-Kq-K)],
0

(4.23)

which, if Eq. (4.22) for 6 is used, is precisely
Eq. (4.21) for the pointlike case. Note that the
common energy denominator s appears finally in
the numerator. One can see from a comparison
of this derivation with the channel Hamiltonian ap-
proach that Eq. (4.21) is in fact valid when g rep-
resents the wave function of a general two-com-
ponent bound state. From the time-ordered per-
turbation approach, this is equivalent to treating
the vertex functions Q = (M' —S)g as single time op-
erators.

The generalization needed for the inclusion of
spin is similar to that discussed for the electro-
magnetic form factors; detailed examples are
given in Sec. V. We emphasize again the general
feature that the bound states cannot couple to par-
ticles moving oppositely along P, as P- ~. This
is because the spin couylings of the numerator
which grow with P cannot compensate for the
"bad" denominator as well as the extra suppres-
sion of the vertex functions, P(P')- 0. In the case

' of the Comyton amplitude in which photons couple
yointwise to the fermion constituents, a z -graph '
is certain to be present for the transverse cur-
rents. The resulting P'/&' contribution has a
local form similar to that of the "seagull" term
ptpA' coupling in scalar electrodynamics, and
leads to a term independent of energy and photon
masses at fixed t in the Compton amplitude T"".
Such a term corresponds to a 6«right-signature
fixed singularity in T, (v, q'). Further implications
of this contribution have been discussed in Ref. 11.

The distinction between Comyton scattering and
photoproduction of composite hadrons (e.g., y+p-p'+p) is thus clear: The additional vertex sup-
pression associated with the composite hadrons
prevents any such z-graph contributions from sur-
viving for P- ~, and the corresponding fixed sin-
gularity, i.e., energy-independent behavior, is
not present. Thus, despite the fact that unitarity

FIG. 5. The four time orderings that contribute to
hadron-hadron scattering from constituent interchange.

alone for lowest-order electromagnetic amplitudes
does not rule out the presence of fixed poles of
such fundamental origin, they are, in fact, ex-
cluded by the composite nature of the hadrons.

V. ELASTIC SCATTERING IN THE DEEP REGION

This section will be concerned with extracting
the asymptotic behavior in the deep scattering re-
gion (large s, t, and u) of the covariant scattering
amplitude given in Eq. (4.21), resulting from the
interchange of common constituents. Comparisons
with experiment will also be presented. "'"

At fixed (c.m. angle, one can readily show that
all but absorptive corrections to the single inter-
change process are either incorporated into the
definition of the wave functions or give nonleading
contributions in s. As discussed earlier, the ab-
sorptive corrections affect only the normalization
of the interchange process since only the small
b-0 of the impact parameter profile E(b) is
probed —in this region F(b) is slowly varying com-
pared with that of the interchange contribution. A
precise definition of the region of validity of the
fully asymptotic form given below depends on
masses and couplings, and can only be determined
at this stage by comparison with experiment.

The behavior of the interchange amplitude, Eq.
(4.21), is readily determined for asymptotic
t=-q~', and u =-r~'. Let us assume for con-
venience that hadron B has the most rapidly de-
creasing wave function at asymptotic transverse
momenta. Then in the deep region, Ps(k~, x) sup-
plies the convergence of the transverse loop in-
teraction, and only R, -0 contributes in leading
order in s. [If f„hatshe same convergence as gs,
then there will be an equal contribution from the
integration regions k~- -(1 -x)q +xr, etc. In
the case of pp-pp, the four distinct regions of the
b integration contribute equally. ]

The asymptotic result can be expressed in the
form

( )
' dx (1 -x)'q~'+x'r '

, x'(1-x)' x(1 -x)
x g„((1 -x)q~ -xr~, x)gc(-xr~, x)

&g ((1 -x)q, x)[x(1-x))sN (x),

(5.1)
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where

)& (x)=,Jd'l ( (k, x)(x((-x)] (5.2)

is a smooth, finite function of x, and the quantity
B is defined from the asymptotic form of the elec-
tromagnetic form factor of hadron B: EB(t)- (-t)B
(logarithmic factors in E~(t) are ignored). More
generally, one could allow J3 to have a logarithmic
dependence on t with obvious modifications of the
final results. Using the asymptotic forms

gD-S DND(x), I. A, C, D

discussed in Sec. II, we immediately obtain

M (t, u) —= sF„(s)ED(t)Ec (u)I (z)

(5.3)

=s' " [—,'(1 -z)] [—,'(1 +z)] I(z),

(5.4)

1 Q
z =cos8, , —, (1 -z) =-—, —,(1+z)=-—,

and we have defined
(5.5)

( )
'

N~ {x)Ã„{x)N~(x)V~(X)
[(1 -x)2{1-z)/3+x2(1 + z)/3]"-'

[x(1 x)]A+B+c+D 3-
x x2c (1 x)2D (5.6)

=s 2&A+c+D)I(0)/16w2' {5 'I)

which is completely determined by the power fall-
off of the form factors. For the case of p-p scat-
tering, C =B =A. =—2, and

do (eo )

dt s

for large s. This prediction is not altered by spin
effects [see Eq. (5.36)], and is in agreement with
experiment (see Fig. 8).

In most of the applications, I(z) is a relatively
slowly-VRl ylng functloQ of ~y the x lntegrRtloQs
being adequately protected for all values of z. If
A., B, C, and D are such that the x integration is
dlvel geQt then logarithmic ox' stx'oQgex' modiflcR-
tions in q

' or r~2 will be present in M(t, u).
The asymptotic form (5.4) can be contrasted with

the %'u-Yang conjecture which involves only two
form factors, both of which are functions of f (or
8).

The 90' {c.m. ) cross section in our theory has
the simple power-law behavior

dO (900)
lim =I 2 2(M)2

Similarly in the case of mp elastic scattering,
A = C =- I, D =- 2, and

dg(90~)

dI; s' ' (5.9)

The small-x region of the integrand will, in gen-
eral, contribute an imaginary part to the ampli-
tude. However, in the physical cases of interest
that will be discussed in detail, it is quite small
ln comparison to the reRl pRlt.

A. Meson-Nucleon Scattering

The inclusion of the effects of spin in the inter-
change calculations is as straightforward as it is
tedious. The nucleon will be taken as a composite
state of a spin- —,

' (quark current) constituent bound

to a core whose dominant spin is I. Of course,
spin-0 plus spin-1 would be the natural choices if
the core is composed of two remaining quarks.
The spin of the core is chosen to guarantee as-
ymptotic GB/G„scaling (see Sec. III). The pion
will be taken as a composite state of a spin=,'

(quark current constituent) bound to a spin--,' core
with quantum numbers of an antiquark. Thus both

which is again unaffected by the inclusion of spin.
This is in excellent agreement with the data (see
Fig. 6) for s& 10 GeV', and is the basis for our
prediction that E,(t)- ( t)-' for -t& 5 (GeV/c)2.

Thus far we have simplified the interchange
analysis by neglecting quantum number considera-
tions. In actual fact, one must choose constituent
models for the mesons and baryons which satisfy
the required symmetry and conservation laws.
For instance, the interchange contribution to pp
scattering takes its simplest form in those models
in which the proton wave function contains no anti-
quarks at high transverse momenta. In this case,
only the interchange or (ut) topology [or (tu) by
crossing symmetry] of Fig. 3(b) contributes. If
antiquarks ox more complicated core states were
present in the region of interest, then "box"
graphs of the (st) and (su) topology also must be
included in the amplitude.

The contribution of the (st) topology is readily
obtained from the real (ut) interchange amplitude

by applying (su) crossing (after the angular part
of the d2k~ integration has been performed). For
example, applying {su) crossing to the results
given in Eq. (5.3), one obtains for large s and t

M(t, s) = -(-t)-D(-s -3e)-c

X,{x)X„(x)V,(x jN, (x)
[-(1-x)'t -x's -ie]" '

[x{I x)]A+B+c+D3-
X x'c(1 —x)'D
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M=u(p+q)[-A+y QB]u(p), (5.11)

Q" = (p + y)" + (p +q +r)('.

(ut) and (st) diagrams contribute to this process
[see Fig. 3(b)].

The pion-nucleon amplitude is written in the
canonical form

a y matrix, helicity should be conserved asymp-
totically and one expects and finds A/sB-0 as
gazoo

The necessary traces for the (ut) diagram in the
deep scattering region are.

P =—Tr[I'fiy, (Ifiy, i(i'(p + M) (p+ /+ M)]

(5.14a)

Projection operators which can be used to extract
the invariant functions A. and B are as follows:
Define

and

P, =-,'Tr[rpiy, giy, ttr(p+ M) tt(p+ )+M)]

(5.14b)

P, =-,'Q Mu(p)u(p+q)
SPlI1S

and

P, =—,'Q Mu(p)y eu(p+q),
SPlllS

(5.12a)

(5.12b)
(5.15)

where I' l" is the vector projection operator
given in Eq. (3.1Vb). Mass terms in m~, m„and
m, are neglected. If the traces in P, are per-
formed, one obtains the leading order result

P, =-', q, 'r '(-2q, '[I —k, '/(4xm, ')]] .
where

(2p+q) =0.
A suitable vector (in the infinite-momentum frame)
is e„= (0, r~, 0). Then

P, = z~q~2(-A + MB) + r~'MB, (5.13a)

By performing the trace for P„one discovers
that A and B have the same asymptotic dependence
(at fixed angle); this means that helicity is con-
served and B dominates the differential cross sec-
tion, i.e.,

1~ 2p =2q~ e 'r~B. (5.13b) (5.16)

Since the vector core c is coupled to the proton by where

I
B(( x) = ). fd'k,

( )
xkgk, ~ ((-x)k, , x)k„(kk kx)k(k, (1-x)i), -xx„x)k.(k, -xx„x)

0

k~'
-2q 1—

4xm,
(5 I'I)

The asymptotic behavior of this amplitude in the deep scattering region, assuming a dipole nucleon be-
havior (P„-S ') and a monopole pion form factor ((I),- S '"), is

1

B(t,u)=—(-t) '(-u) "' dxN(x)x'[-(1 -x)'t-x'u] "',
0

where

(5.18)

N(x) =N„(x)N,'(x), d'0 (t)(k, x)[x(1 -x)] ' 1-
2v 3

C

The (st) graph is achieved by continuing the variable u to +(s +is). The result is

(5.19)

(5.20)
j.

B(t, s)=—(-t) '(s+ie) "' dxN(x)x'[+(1 -x)'t+x's+ie] '",
0

which has a small imaginary part for physical t &0.
If we adopt a definite quark wave function model for the pion and nucleon, then the required weightings

of the (st) and (ut) amplitudes are determined. In general, the amplitudes which describe elastic and
charge exchange scattering are of the form:

B())'p - s'p) =+aB(t, u) +pB(t, s),
B(m p w p) = -pB(t, u) - o(B(t, s),

B(m p-m'n)= [B(t,u)+B(t, s)].

(5.21)



302 J. F. GUNION, S. J. BRODSKY, AND R. BLANKENBECLER

The (su) topology would contribute in the simplest quark model, but the core routing should make it a
small contribution. It will be neglected here. The asymptotic amplitude is then

1
B())'p)=s '[—,'(1-z)] ' dxN(x)x'(4o(1+z) '"[x'(1+z)+(1-x)'(1-z)] '"

0

+p[x'- (1-x) —.'(1 -z)]-"'] . (5.22)

—(z'p) =)~),[4n(1+ z) '+ p]'do, o (1+ z)
(5.24)

and

Let us now approximate this simple result to get
even a simpler form. The p integral is almost in-
dependent of z for small z, and has a negligible
imaginary part. The n integral is real, and its
dependence on z is very close to (1 + z) '". Fur-
thermore, the coefficients of +4m and P are al-
most equal at z =0, as one can check by numerical
integration. Thus a convenient form is

B())'p)=N s 4[—(1 -z)] '[4n(1 + z) '+p], (5.22)

which results in the differential cross sections

where o, is a constant. A comparison of the en-
ergy dependence at 90' is made with the data of
Owen et al. " in Fig. 6. The angular dependence
of the m p-m p reaction is compared with the
same data for o) =2, p =1 in Fig. 7. (This corre-
sponds to simple quark counting —two 6' quarks
plus one X quark interchange. '4) The agreement
is quite good even quite far from 90', but clearly
better data throughout the high-energy region is
desired for a more crucial test. A search for the
best values of n and P has not been made.

The ratios of the differential cross sections at
90' for these three processes are yredicted in
this leading approximation at large s to be

do())'p-w'p): do()) p-z p): do()) p-))'n)

()) p) = I,[4p(1+ z) '+ o]',do ~o' (1+z)

—()) p - ))'n) = )) [-,
'

(o) +p)]'
do 0

o' (1+z)
dt s' (1 -z)4

x[4(1 q z)-'+1]',

(5.25)

(5.26)

= (4o'+p)' ()r+ 4p)' ~ (~+p)'

(5.27)

A particularly striking feature of this prediction
is that once the ratio of I =0 and I =1 exchange is
fixed, then the angular dependence in the deep re-
gion of all three processes is precisely deter-
mined. "

O. I

I I I I I I II)I

SLOPE 8.0~~

l

l

I I I I I I II

~ Owen et al.

R(z} 2—

I )I I
I

I
)

do
dt

~ ~

I
'

I

7T P
=R(z}dt 90

0.01

I

(I-z
I ) I ) I

0.001 I I I I I I I I

0.4 0.2 0 -0.2 -0.4
z=cos Hc m

10

s (Gev')
100

FIG. 6. The energy dependence of the 90' cross
section for 7) p scattering.

FIG. 7. The dependence of the x p differential cross
section on z (cos 8) in the center-of-mass system. The
lack of any strong energy dependence of the ratio should
be noted. The solid line is our prediction given in Eq.
(5.25) with n =2P.



a(K-p -K-p) = -na(t, s),
&(Kg p-KgP) =kP[&(f~&)+&(f~ s)1~

(5.30)

which, using the approximations of Eq. (5.22), be-
come

do' 0 1+ g 16K
dt s' (1 -z) (I+a)

The normalization constant 0'o is the same as that
of the mN reaction in the SU(8) limit.

The cleanest prediction is the s ' behavior at
fixed angle. However, ihe predicted angular de-
pendences based on simple quark assignments are
also very interesting. Except for the no-helicity-
flip factor (1+z), deep-elastic scattering of K'p
should be approximately symmetric about 90'
rising towards small t and smaQ u. The process
K p -K p, which depends on B(s, t) only, should
not have a backward peak, but should possess the
same forward peaking as K'p. Note that the odd-
charge conjugation exchange reactions m p mon

B. Kaon-Nucleon Scattering

If the valence quark assignments are assumed
for the quantum numbers of the kaon and the nu-
cleon, then their scattering amplitudes in the deep
scattering region are extremely simple. Since
the K' wave function only contains 6' quarks and
X quarks in the high-transverse-momentum re-
gion, then only the 6'-quark (ut) interchange dia-
gram contributes. This assumes that there are
no high-momentum X quarks in the proton wave
function. Note that this does not exclude the pres-
ence of strange quarks and/or antiquarks in the
quark sea at low momentum transfer. It then fol-
lows from crossing that K p-K p scattering in
the deep region proceeds by 6'-quark transfer—
only the (sf) diagram can contribute. Furthermore

~(K,P-K, p) =.'[M(K'P--K'P) -M(K P-K P)],
(5.28)

and cleRrly

M(K p-K p)=0,
where K'p-K'p proceeds by the gt) interchange
of an 2 quark and K p-K'p requires % quark (st)
transfer. If the K-meson form factor scales with
the pion form factor, one finds the deep-scatter-
ing predictions

a(K'P-K'P) = aa(t, m),

and K~ p-K~ p are predicted to have the same an-
gular distribution and both should reach a mini-
mum just beyond 90'.

The predicted ratio of 16/1/6. 25 (P/a)' for

«(K'p-K'p)/«(K-p-K p)/«-(K. p-K.p)

Rt 90' is ln qualitative agreement with the Q„~ =- 5-
GeV/e data" (although Regge exchange may still
be important at this low energy). The steep asym-
metric behavior of the 5-GeV'/c K p-K p data
and the relatively symmetric behavior of the 5-
GeV/c K' data. are in qualitative agreement with
our theoretical predictions.

One sees that the parton interchange model to-
gether with the valence quark assignments, per-
hays not surprisingly, connects smoothly with any
possible forward or backward nonexotic Regge ex-
changes. The interchange force thus provides a
smooth extrapolation between these peaks, falling
as a power in s as the distance between the peaks
increases. This is very suggestive that the in-
terchange mechanism may provide the basic strong
interaction. Then, if it is present in an amplitude,
it can be built up at small t or u by virtual had-
ronic bremsstrahlung and gluoq, forces into a co-
herent Regge exchange. The implication of this
picture would then be that Regge trajectories and
residues at large momentum transfer must be
such that they approach the amplitudes computed
here. This possibility wiQ be discussed in detail
elsewhere.

It is interesting to note that the 5-GeV/c data of
Chabaud e, t ~E.26 suggest that K'p scattering has
more striking interference minima than K p.
This is probably consistent with Rn interfering
K'p Regge contribution that is purely real, as
suggested by exchange degeneracy which also pre-
dicts that K p would have a pure rotating Regge
phase. This rotation can change the interference
from destructive to constructive and vice versa.
A, thorough amplitude analysis of the data at large
angles, and more data at larger energies, would
clarify this situation and would be an interesting
check of the interchange theory.

C. Nucleon-Nucleon Scattering

The calculation of nucleon-nucleon deep scatter-
ing is, in at least one respect, simpler than that
of pion-nucleon deep scattering. If we assume that
the pl'oton wRve function contains no RntlquRrks Rt
high transverse momentum, then only the Qt) and
(tu) topology contributes. The actual computation,
however, is markedly more difficult. This is due
to the necessity of including not only the haU-unit
spins of the nucleons and constituents, but also
the unit spins of the nucleon cores (see Sec. III).



304 J. F. GUNION, S. J. BRODSKY, AND R. BLANKENBECLER

The calculations are especially difficult since the
leading terms involve the p"ps part of the spin-1
pro jection operators.

Fortunately, the couplings of the cores conserve
spin=,' helicity, and we can focus our attention on
only two of the five invariant amplitudes (vector-
vector and axial-vector-axial-vector) for the as-
ymptotic calculations. Note that the helicities of
nucleons in Fig. 3 (b), A and D, and those of B and
C are the same. Thus we write the resulting as-
ymptotic amplitude in the form

& =h Q (SR +%)(SR+SR) t
spins

=2s'i V(z)+A(z)+ V(-z)+A( z)j'
+"IV(z) -A(z)l'+lu'I V(-z) -A(-z)('

(5.33)
Isolation of the invariant amplitudes V and A

may be achieved using the projection operators

1 „=~g SR u(p)y„u (p+r)
splns

SR =V( z) u( p +q)y&u( p+q +r)u (p +r)pu (p)

+A(z)u(p+q)y, y„u(p+q+r)

x u (p +r)y, y~u (p) . (5.32)

The contributions arising from the symmetrization
of the initial or final nucleon is then easily ob-
tained as

and

x u(p +q+r)y u(p+r)
=2 (s + t )T (z) +~z (s' —t )A (z)

I'„=~+ SRu(p)y, y„u(p+r)
splns

xu(p+q+r)y, y" u(p+r)
=-,' (s'+t')A(z) +-,' (s'- t ')V(z) .

(5.34)

(5.35)

SR = -V (-z )u (p + q)y„u (p) u (p + r)y"u (p +q +r)

-A(-z) u(p+q)y, y„u(p)
and

v =, (r, +r„)+,, (r„-r„)I

xu(p+r)y, y" u(p+q+r).

The total amplitude is 3K +It', . The differential
cross section is then proportional to

A. =, (I'„+1"„)—,(F„—r„).1
2is 2t

The interchange contribution is then written as

dxpfq'k,
~q ~, P„(k ~ P-x)q —xr„,x)P„(k, x)P (k -xr, x)P„(k +(1 —x)il, x)Z,

0

(5.36)

and

2=ii(pxr)y (rq+p. )y, (p) (p+q)yx(, +p)y, (p q+r)(q —-',' q" — ',')
if C

me mb& mc md .

The projections (5.34) and (5.36) were performed using the algebraic computation program REDUCE. We
checked explicitly that the four possible origin shifts of the k~ integration yield the same answer in the
asymptotic region. The g 'g8~ terms do not contribute to the leading asymptotic behavior (by one power
of s). The remaining terms have the same asymptotic behavior For simpli. city, we present the repre-
sentative contribution from the p, p~p, p~q jm, 4 term, from which we obtain

1 d, ,g„(k~, x) N~'(x)(1 -x)'x'
2(2v)~ ~ x~(1 x)~ tzus[x2u + (1 x)2t]2 (5.3V)



LARGE-ANGLE SCATTERING AND THE INTERCHANGE FORCE 305

I,=t' u[x'(1-x)'-x '(1 —x)'-x '(1-x)+x '+x '(1-x)'-x '(1-x)+1]
+ f'u'[x(1 -x) '+2x(1-x) ' —x —2x '(1 -x) '+x '(1 -x)s-Sx '(1 -x)2+x '(1 -x)

+3x 2+x ~(1 x) 2 x ~('j x) ~+Sx ~(1 x) 8x ~(1 x)

+ Sx-' —3(1 -x)-'+ (1 -x) +1]
-tu'[x(1 -x) ' —2x(1 -x) '+x+x '(1-x) ' —x '(1 -x) '-2x '(1-x)'+5x '(1 -x)

-Sx '-(1-x) '-(1 -x)+2]

I = t'u'[ x(1- x)
' —2x(1-x) '+x+x '(1 -x) '-x '(1 —x) '-2x '(1-x)'+5x '(1 -x)

-3x ' —(1-x) ' —(1-x)+2]
+ f'u[x '(1-x)'-x '(1-x)' —x '(1-x)+x '+x '(1 -x)'-x '(1 —x)+1].

The integral

2 2 ), jd'kk, 'q„(k, , x)[ (x1- )x] 'N„'(x)
d,

-- = (1 -z)-'I(z)/I(O)

(1 z 2)-5.2 (5.40)

is a smooth function of x. Thus we obtain an as-
ymptotic differential cross section of the form
(z =cose, }

in the deep asymptotic region. Our prediction is
compared with experiment in Fig. 9. The angular
dependence does seem to be nearly energy-inde-

&&
= I",'(&)I'",'(f)I",'(u)I(z)

= s-"(1-z')-'I(z}.
A numerical fit to I(z) for small z yields

(1 -z') I(z) - (1 -z ) '2I(0) .

(5.38)

(5.39)

Thus the effect of spin is to increase the g depen-
dence but not the over-all fixed-angle energy de-
pendence. Note that we have chosen the asymp-
totic dependence of g -S ' to agree with an asymp-
topic dipole falloff of the nucleon form factors. As
mentioned before, mass corrections within the
dipole formula should be taken into account in any
comparison with the data at nonasymptotic ener-
gies. In Fig. 8, we note that the energy depen-
dence of the 90' cross section" changes from s "
to s '2 as t—= -2s varies from t= -6 GeV to -20
GeV'. This shift in the power dependence cross
section is consistent with a change from (-t) "
to (-f) "in the power dependence of the F, form
factor in this same region. Thus the asymptotic
dependence of the 90' cross section is an ex-
tremely sensitive indicator of the rate of falloff of
the elastic form factor. The consistency betw'een
six pow'ers of the form factor and the 90 data
seems to be remarkably good."

Equation (5.3V) also predicts an energy-indepen-
dent form for the angular dependence of

10
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FIG. 8. The energy dependence of the 90' cross
section for pp scattering.
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I O. I

9.2
~ 7. l

pendent, and the predicted form seems to agree
with experiment for

I tl, lu I
& 5 GeV'. Note that

the interchange theory gives a complete asymp-
totic prediction of both the energy and angular de-
pendence; only the over-all normalization constant
is undetermined.

%e have carried out a fit to pp scattering data
above 5 GeV/c. Only representative points were
included for Itl&0. 1 (GeV/c)'. The results are
shown in Fig. 10. Although the data of Cocconi et
al."' is not included, the fit agrees with this data
as well. In order to describe the low-t region we
h ave included a Pomeranchukon-type description
of the Regge region and dipole mass corrections
to the ultimate constrained asymptotic interchange
prediction of da/dt- s '-'(1 -s') "f(0). We have
fitted 431 data points with an X'/point of 1.5. The
fit involves 8 parameters, 3 of which are asso-
ciated with the normalization and dipole correc-
tions to the interchange contribution and 5 of which
are associated with the Pomeranchukon contribu-
tion. [The latter contribution is negligible for I/I
&4 (GeV/c)', and p„&30GeV/c. ] Since the inter-
change contribution falls so rapidly in s at fixed t
(like s '), it is of course extremely small and
completely negligible at small t/s compared to the
contribution of the Pomeranchukon at ISR (CERN
Intersecting Storage Rings) energies (s z 900
GeV'). The parametrization of the Pomeranchukon

0. Annihdatson Processes

Since the interchange theory is in principle a
complete dynamical theory in the deep scattering
region, and hence has analytic cross behavior, it
is possible to continue the invariant amplitudes
for the previously discussed processes in order to

Fit:

10
ic
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M=iF'+ jt. Ji(RMt)e ' + (s+so) J(i-z )+-S

Data.'Akerlof et al.

al.

IO
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CD

10-'
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v =IQQ
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~ =. 14.5
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c =19.2
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x = 2112
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contribution, which is determined from the low-
e~ergy data (s & 50 GeV') turns out to be consistent
with the ISR measurements of dv/dt. " Details will
be presented elsewhere, but it should be remarked
that since the interchange force will develop Reg egge
behavj. or at small t st w&ll not vanish as ra xdl

as the zeroth-order theory used above. The fit
can then be improved at intermediate t. Also, if
the elastic form factor of the proton should fall
more rapidly than (-t) ', then the predictions and
the fit will need to be modified in the higher s and
t range.

0
0 0.2 0.4 0.6 0.8 I.O

10-' = —~19

Z =COS GC iT)

FIG. 9. The dependence of the pp differential cross
section on z (cos 8) in the center-of-mass system.
The lack of energy dependence is quite clear. Th l'd
line is our asymptotic prediction given by Eq. (5.40}.
The data at 8.1 GeV/c has been omitted, but it would
agree with this curve if the 90' point is not used for
normalization.
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FIG. 10. A fit to the pP differential cross section when
the forward Pomeranchukon exchange is included. . The
f t constrained at large t L to the asympt t -' ter-
change prediction do/dt- Cs="(1-z2) ~ 2
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obtain predictions for a variety of annihilation re-
actions. For example, the process pp-pp can be
crossed to the process pp- pp. Similarly the
meson-nucleon scattering amplitudes can be
crossed to yield predictions for pp- m'm, K'K-,
etc., in the deep scattering region where one again
only needs to know the wave functions in the asymp-
totic region.

We begin by discussing the process pp- w m'

which we obtainby s t crossing from m p m p.
Technically, one should begin with the exact de-
scription given by Eq. (5.22) for the invariant am-
ylitude. By direct calculation, we have found that
for lz l

~0.5, one may equally well use the approxi-
mate expression (5.23). The invariant amplitude
becomes

is in agreement with the ratio observed at 5 GeV/c
Since continuation of our approximate forms for

s'dc/dt should be quite reliable, we can obtain a
prediction for pp- pp from the approximate deep-
scattering formula for pp-pp [Eq. (5.40)]:

s'—(pp pp) =f(0)s'(4tu) i2d0'
dt

s'—"'(pp-pp)=f(o)lul'(4ltls) ',
where we expect that a- 0.4 and I - 5.2 in the
lower-energy ranges. Thus pp is symmetric
about 90' while pp should have only the forward
peak. The ratio of the cross sections is

N o. PB(pp-w v')=—— a —+—
83 t2 g2 (5.41)

where t= (p~ —p, -)', etc. Using this, one obtains
the prediction

,dc, „c,(1 -s')
(PP ~F

&&[o'(I -s) '+P(1+ &) '] ~

,dc, o', o.' (1 + g)
s'dt (pp-K K')= 2',

(1 ),

and the ratio

—(rC-p- K-p — (pp-K-K. ') =2(1 -s)-'.do' d 0'

dt dt

(5.43)

(5.44)

The data" for pp-K K+ do indeed indicate a
sharp forward peaking and, a very small, probably
exotic, backward peak. The 90' ratio given above

Note that this can be obtained directly from
s t crossing of the approximate form of s~dc/dt
given in Eq. (5.25). Thus spin does not complicate
the crossing of these reactions, and the approxi-
mate expressions may be used reliably. Note
that Eq. (5.42) predicts a fixed-angle cross sec-
tion proportional to s ' which is a characteristic
of all the meson-baryon processes. Using o.'-2P
as found in 7 p F p scattering, one expects a
minimum in do/dt just beyond 90'. The data'0 at
5 GeV/c are in good qualitative agreement with
the interchange predictions, except, of course,
for the very forward and backward direction where
one expects baryon trajectory exchange to be im-
portant.

Proceeding in a similar manner, one can obtain
a prediction for pp K K' by s t crossing from
K p-K p. Using Eq. (5.31), we obtain

(5.45)

which at 90' is -2'~-49.
Experimentally, the 90' ratio at 5 GeV/c is

near 100,3' but of course the energy is too low to
1Ilake a quantitative comparison meaningful. It is
interesting, however, that such large ratios are
predicted by the interchange theory —in simple
Regge theories and Wu-Yang type theories, the
ratio is of order unity.

E. Resonance Production

Once one has a basic understanding of elastic
processes in the deep scattering region and thus
of the meson and nucleon wave functions at large
momentum transfer, useful information about the
wave function of excited states and resonances
may be obtained from their production cross sec-
tion. We also note that measurements of polariza-
tion in such processes as pp- ~"e can lead to a
check on the interchange prediction (for the sim-
ple valence quark model) that the amplitude is
purely real.

In the case of mesonic resonance production,
e.g., m+p p+ p, a comparison of the fixed-angle
energy dependence of the cross section in the deep
region with that for n'+p-m+ p, is a sensitive
probe of the asymptotic behavior of the p form
factor. Since the p is presumably not elementary,
m+ p- p+ p should fall faster with energy than
y+ p-w+ p. The u dependence of the (ut) contri-
bution to the w + p -p+ p amplitude also reflects
the asymptotic behavior of the wave function of the
p. A systematic comparison of the above three
processes and their analogs for other resonances
would be of particular interest.
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In the case of baryon-resonance production,
such as v+p-w +N*, K+P-w+(A*, Z*), and

p+ p-p+N*, it would be very surprising if the
fixed-angle asymptotic energy dependence differed
from that of the corresponding elastic processes,
w + p n + p, K+ p, and p+ p-p+ p. Since pre-
sumably the yN*N* spin-averaged form factor (we

phrase these results in terms of this form factor
in order to make a statement independent of spins)
falls at least as fast as the nucleon form factor,
the situation is similar to that of the transition
form factor (see Sec. IIID); the extra convergence
factors are simply absorbed in performing k in-
tegrations.

The data of Amaldi et al."for pp-pN* suggests
that this process has the same energy and (large)
angle dependence as does elastic scattering and
supports the above predictions from the inter
change model.

VI. CONCLUSION

In this paper we have proposed a unified treat-
ment of scaling behavior in virtual electromag-
netic processes, the asymptotic behavior of elas-
tic form factors, and hadron reactions in the deep
scattering region (s large, t/s, u/s fixed). The
essential physical assumption which links these
processes is the existence of charged constituent
states within the composite hadron which have
minimal electromagnetic interactions and ele-
mentary propagation properties at short distances.
We should emphasize that the existence of free
states for the constituents is not required. In
physical terms, even if the constituents are bound

by virtue of energy thresholds or selection rules,
the interchange of common constituents still
occurs in hadron-hadron scattering when the
bound-state wave functions overlap. This is ex-
plicitly true for the (ut) (crossed) graph contribu-
tion [Fig. 3(b)] to the interchange process, since
the amplitude is real and particle production is
not implied. The absorptive contributions of the
box graph (st) and (su) amplitudes are generally
negligible in the calculation of exclusive cross
sections in the large-angle region, and thus the
results are essentially unchanged if there is some
dynamical final-state modification of these absorp-
tive parts.

Although our results are more general, it is of
course appealing and probably compelling to iden-
tify the fundamental constituents of the hadrons,
i.e., the structureless carriers of the electro-
magnetic current, with the quark representation
of current algebra on the light cone. In its de-
scription of virtual electromagnetic processes,
our theory shares features with the field-theoretic

parton models of DLY, LPS, and Drell and Lee.'
In these models scaling is guaranteed if the par-
ton-proton amplitude has convergent off-shell be-
havior. In our model this condition is guaranteed
by the convergence properties of the bound-state
wave function. [This softening condition also
guarantees the existence of fixed-pole behavior in
the Compton amplitude as discussed in Ref. 11.]

Our theory is consistent with the general picture
of Feynman in which hadronic scattering is a con-
sequence of parton exchange. The theory developed
here is based on the dominance of the interchange
of only two basic constituents in exclusive scatter-
ing at fixed angle. In contrast, the Regge descrip-
tion of large-angle scattering requires an infinite
coherent sum of Regge cut and pole contributions.
In some models, this requires the exchange of an
infinite number of dual model quarks. " If these
different theories were to be equivalent, it would
require that one of our exchanged (current) quarks
be a superposition state involving an arbitrary
number of dual model quarks.

One somewhat model-dependent assumption of
our theory is the simplified treatment of the had-
ronic bound-state wave function. We have as-
sumed that (1) when one constituent is at large
momentum transfer relative to the rest, the state
can be approximated as a two-particle state (for
f -~), and (2) whenever it is safe, we have taken
this two-component wave function to be an inverse
power-law function of the total energy variable
S= (p, + p, )' only, rather than remaining the de-
pendence in the individual "off-shell" variables
(p -p, )' and (p -p, )'. This analogous to suppress-
ing the relative energy dependence of the Bethe-
Salpeter wave function, and is justified for our ap-
plications to exclusive scattering, where it yields
an invariant scattering amplitude. In cases in
which one of the constituents appear formally in
an asymptotic state, the appropriate offshell vari-
able must be used for the dependence of the vertex
function.

We have also made an additional important con-
jecture: The dominant constituents appearing at
large transverse momentum in the P- hadronic
wave function are the simplest quark representa-
tion states (e.g., qq for the mesons and qqq for
the baryons). This conjecture becomes reasonable
if one notes that the complications of multiparticle
states due to prior (virtual) hadronic bremsstrah-
lung (see Fig. 11) vanish rapidly in pr . At low
momentum transfer, this bremsstrahlung process
yields states of arbitrary number and type and
may be regarded as one origin of the wee parton
or Regge spectrum in the structure function
vW, (~) at large ~.' As pointed out by LPS, ' the
scaling Regge behavior of vR', -co ' for ~- ~ re-
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fleets the Regge behavior of the forward antiparton
(quark) amplitude M-,~-s . In fact, Regge behavior
of this amplitude inevitably arises from the same
type of hadronic bremsstrahlung process depicted
in Fig. 11.' Thus Regge behavior and duality in
vS', and M-,~ actually reflects the Regge behavior
and duality of normal hadron-proton scattering
amplitudes. For ~-1, the bremsstrahlung is sup-
pressed and only the simplest quark states of the
proton wave function at infinite momentum con-
tribute. However, at large ~, the bremsstrahlung
picture implies that the target hadron (with mo-
mentum P- ~) in inelastic e-p scattering is usually
another hadron of lower momentum zP (1 & z & 1/&u)

than the target proton itself. Thus sum rules in-
volving vW, are only valid when the bremsstrahlung
effects cancel —i.e., when the measured current
commutator corresponds to a conserved charge.
Examples of legitimate sum rules are those of
Adler, "Gross and Llewellyn Smith, "and Brodsky,
Gunion, and Jaffe.36

In the calculations of the interchange amplitude
at large t and u, three of the four wave functions
are evaluated at large relative transverse momen-

tum, and thus only the simplest common quark
interchange diagrams need to be considered. In
the case of pp scattering, only the crossed dia-
grams contribute. In the case of the charged Kp
amplitudes, only a single quark diagram contrib-
utes in each of the two cases. In pion-nucleon
scattering, both quark interchange (tu) and anti-
quark transfer diagrams (st) are required. As
we have seen, all of our predictions with these
simplest of quark models are consistent with ex-
periment, but one cannot rule out some admixture
of more complicated quark states in the large
transverse-momentum hadronic wave function.

In the calculations presented here, we have ob-
tained the results for the (st) and (su) amplitudes
from the appropriate analytic continuation of the
simpler (tu) amplitude. We have checked, using
the P- ~ method, that this crossing is valid for
the case of point couplings in perturbation theory.
In the case of bound-state wave functions, one
must note that the assumption that the wave func-

tions are determined by the single variable S is
not valid for the direct computation of amplitudes
with absorptive parts. Thus further development
and the relaxation of the single variable 8 assump-
tion will be required before one has a completely
crossing-symmetric theory.

It would be useful to develop other calculational
approaches to the interchange theory, especially
within the explicit covariant formalism of Drell
and Lee, ' or the covariant Sudakov variable analy-
sis of Landshoff, Polkinghorne, and Short. ' We
can also anticipate that many of our results can
be obtained from a light-cone approach.

Qne important step in the interchange theory is
to prove that the impulse approximation, as de-
fined in the Introduction, is valid at large t and u.
In fact this is guaranteed by the approximately
power-law behavior of the consituent wave func-
tions. The exchange or interchange of a higher
number of constituents is not important in the as-
ymptotic region, since large momentum transfer
is preferentially carried by the minimum number
of exchanged particles. (This is not the case if the
wave functions have exponential falloff. ) Diagrams
such as those of Fig. 12 correspond to absorptive
corrections and because of their range in impact
space, they essentially change only the over-all
normalization, and not the energy or angular de-
pendence of the basic interchange amplitude.
Diagrams such as Fig. 11 corresponding to had-
ronic bremsstrahlung corrections contribute to
the Reggeization of the amplitude at small t and u

but vanish exponentially away from the forward or
backward direction. Thus despite the large mag-
nitude of hadronic couplings, it is justifiable to
compute the lowest-order interchange amplitude
in the deep scattering region, and to obtain the
asymptotic result (1.2) for the cross section at
fixed angles.

It should be emphasized that only the asymptotic
form of the cross section for s- ~ at fixed t/s,
u/s is determined by the simple interchange am-
plitude. Higher-order diagrams and finite-mass
corrections lead to modification of order m'/t

FIG. 11. A typical bremsstrahlung graph which leads
to a Regge-type behavior at smal1 momentum transfers.

FIG. 12. Graph of a typical absorption correction
which modifies the magnitude of the scattering ampli-
tude.
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and m'/u. Thus the measured large-angle cross
sections are expected to gradually approach the
predicted asymytotic result in a manner similar
to the approach of the elastic proton form factors
to their true asymptotic behavior, but not to ex-
hibit the quick onset of Bjorken scaling found in
deep-inelastic electron-proton scattering. Fits to
data must allow for these mass corrections. The
next stage in the development of this theory must
involve more precise determination of the prop-
erties of the binding interaction (Is it due to vector
gluons, the physical states themselves, or other '?)

and calculations of the corrections to the asyrrp-
totic formulas given here. Although power-law
forms have been used in our examples, other
similar analytic forms, e.g., InE(t) (a --b Int) Int,
are allowed with obvious modifications of the final
results.

A simple and dramatic consequence of the inter-
change theory is a prediction for the asymptotic
behavior of the effective trajectory at large I; for
an elastic process A+B- C+D. Using the sim-
plest model, the contribution of the (ut) amplitude
at fixed, large f = (P„-Pc)', is

~A+s~+D ~ ( s)ugc{t)P(f)

where, for consistency, the effective ~ must sat-
isfy

a„c(t--~)=I -A —C

-3 for pp-pp
-I for mp-np

'

behave defined the values of A and C from the
asymptotic behavior of the elastic form factors

The power-law dependence of P(t) at large I may
also be determined from the form factors of the

(

particles involved in the reaction. Further con-
sequences and comparisons with data are given in
Ref. 14. We have also shown that this result for
the effective trajectory also applies to the triyle-
Regge region of single-particle inclusive process-
es at large transverse moments. '

A complete discussion of photon-induced (real
and virtual) exclusive processes will be given
elsewhere. Here we shall simply emphasize that,
in general, the s dependence at fixed angle is al-
ways less steep than the corresponding vector-
meson-induced processes because of the direct

electromagnetic coupling of the photon to the ele-
meniary constituents. (All of the observed had-
rons are assumed to be composite. ) As we have
discussed, a J=0 fixed singularity —i.e., an

c,* ~ e, amplitude independent of energy and photon
mass of fixed t with form factor dependence in t-
is predicted in the Compton amplitude, but not in

p photoyroduction. Thus a dramatic breakdown of
vector dominance is yredicted in the deep scatter-
ing region. In general, the composite nature of
the hadrons will eliminate the P- ~ contributions
due to z-graphs, and hence fixed po1es, from
purely hadronic processes and photoproduction of
hadrons.

The recent measurements of large-angle pion
photoproduction of Anderson et al."generally
confirm our predictions for this process: The en-
ergy dependence at 90' is approximately s ' as
expected, and also the existence of a flat central
region in the angular distribution is clear. A
similar confirmation is provided by their mea-
surements of the transition process yp-n ~".
Since a detailed discussion of the features of ex-
clusive and inclusive photoproduction and electro-
production processes will be given elsewhere, let
us simply note that the spinless predictions for
photomeson production yield the value n,«( ~)-

This would then provide a natural explana-
tion for the rather strange behavior of the em-
pirically observed effective n for this process
which lies near zero. Thus the interchange con-
tribution could easily be confused with a fixed pole
(which has o.,«=0), particularly in the nonasymp-
totic t region.

All of the above processes should demonstrate
the unity of the underlying physics of high-trans-
verse-momentum an/ virtual-photon processes.

The simple physical picture of large-angle scat-
tering afforded by the theory of the interchange
force allows one to unify such diverse reactions
as photon- and hadron-induced exclusive and in-
clusive processes. The general properties of the
central angular distributions, their approximately
power-law fal)-off in energy, and the relation be-
tween their general shape and the quantum num-
bers of the interacting hadrons deserve further
theoretical and experimental studies. Large-angle
data covering a wide range of energies are partic-
ularly important for testing the interchange the-
ory and for determining the details of the had-
ronic wave functions and the proyerties of their
constituents.
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A unitary model of multiparticle amplitudes with multiperipheral and diA'ractive production
mechanisms is presented. The model has a bootstrap solution for the elastic amplitude of the form

I(J —I) + [(J —I)' —ll st] '"
) ', leading to constant total cross sections at high energies. Inelastic

cross sections and multiplicity distributions may be predicted in qualitative agreement with experiment.

I. INTRODUCTION

It is generally accepted today that a realistic
model of particle production in hadron collisions
at high energies should contain both multiperiph-
eral dynamics and diffractive fragmentation, ' while
at the same time satisfying the constraints im-
posed by the unitarity condition. ' Unitary models
of multiyarticle amplitudes where particle pro-
duction comes exclusively from multiperiyheral
mechanisms have been developed by several au-
thors. ' We present here a model in which the S
matrix is unitary at high energies, but which in-
cludes both multiyeriyheral and diffractive pro-
duction. Besides, a bootstrap solution exists
which leads to a constant total cross section, in
contrast with most previous models in which self-
consistent solutions lead to (logs)' behavior of the
total cross section, thus saturating the Froissart
bound.

The model is based on the eikonal approxima-
tion with the inclusion of the possibility of pro-
duction of excited states of the external yarticles.
The masses of these excited states are allowed to
vary continuously within the limits imposed by the
validity of the approximation. The excited states
are allowed to decay into a nucleon and pions.

We thus have an infinite-channel model in the
external "nucleons. " In Sec. II we show how the

inclusion of the possibility for excitation of the
incoming particles leads to results similar to
those obtained by Aviv, Sugar, and Blankenbecler
(AS+),s but with the inclusion of an energy-depen-
dent function I(s)„which is essentially an integral
over the squares of the coupling functions for the
excited "nucleons. " The basic amplitude is speci-
fied by the diagram of Fig. 1.~ All S-matrix ele-
ments are then shown to satisfy unitarity exactly
at high energies. In Sec. III we show that there
exists a bootstrap solution for the elastic amplitude
which when combined with a restriction on the as-
ymptotic behavior of the function f(s) gives scat-
tering amylitudes leading to constant total cross
sections. We then compute inelastic cross sec-
tions and particle distributions, showing how a
particular choice of coupling functions for the
excited "nucleons" (which also determines their
decay amplitudes) may lead to results in qualita-
tive agreement with experiments.

Section IV contains a brief summary of the re-
sults and some concluding remarks.

II. THE MODEI.

To define the kinematics, let us follow ASH and
write

Jst = mt (coshy„O, 0, sinh y, ),


